

High Performance Design and Implementation of Nemesis Communication Layer for Two-sided and One-Sided MPI Semantics in MVAPICH2

Miao Luo, Sreeram Potluri, Ping Lai, Emilio P. Mancini, Hari Subramoni, Krishna Kandalla, Sayantan Sur, D. K. Panda
Network-based Computing Lab
The Ohio State University

Outline

- Introduction & Motivation
- Problem Statement
- Design Challenges
- Evaluation of Performance
- Conclusions and Future Work

Introduction

- Message Passing Interface
 - Pre-dominant parallel programming model
 - Deployed by many scientific applications
 - Earthquake Simulation
 - Weather prediction
 - Computational Fluid dynamics

•

Introduction

- MPI-2 R(emote) M(emory) A(ccess)
 - Allow one process involved in data transfer.
 - Data transfer operations:
 - MPI_Put
 - MPI_Get
 - MPI_Accumulate
 - Synchronization operations:
 - Fence
 - Post-start-wait-complete
 - Lock/unlock

Introduction

MPICH2

- Freely available, open-source, widely portable implementation of MPI standard
- Re-designed for multi-core systems
- Nemesis Communication Layer
 - Optimized for fast intra-node communication
 - Lock-free queues with shared memory
 - Kernel-based: KNEM
 - Modular design for various high-performance interconnects

Nemesis Communication Layer

Nemesis Communication Layer

- For scalability, high-performance intra-node communication
- Modular design: multiple network modules
- Envision: next generation and highest performing design for MPICH2

An overview of InfiniBand

InfiniBand

- High-speed, general purpose I/O interconnect
- Widely used by scientific computing centers worldwide
- 40% systems in Top500 (June 2010)
- Two communication semantics
 - Channel semantics: send/recv
 - Memory semantics: RDMA

Motivation

- Nemesis + InfiniBand ?
- InfiniBand network module (IB-Netmod)
 - Expose InfiniBand's high-performance ability to intranode optimized Nemesis Communication Layer

Outline

- Introduction
- Problem Statement
- Design Challenges
- Evaluation of Performance
- Conclusions and Future Work

Problem Statement

- What are the considerations for a high-performance network module?
 - Best two-sided performance
 - Efficiently utilize the full ability of interconnects
- Limitation of current ch3 and nemesis general API:
 - Can extensions be made to current layering API?
 - RMA functionality can be optimized by lower layer
- Better performance from extended Nemesis interface ?
 - while also keeping an unified design?
 - providing modularity?

Outline

- Introduction
- Problem Statement
- Design Challenges
- Evaluation of Performance
- Conclusions and Future Work

Designing IB Support for Nemesis: IB-Netmod

- Credit-based InfiniBand Netmod Header
- Additional Optimization Techniques.
 - SRQ
 - RDMA Fast Path
 - Header caching
- Limitation from existing API?
 - Stops directly one-sided supports from lower layer!

Proposed Extensions to Nemesis

Proposed Extensions to Nemesis

Proposed Extensions to Nemesis

Extended CH3 One-sided API

- CH3_1scWinCreate(void *base, MPI-Aint size, MPID_Win *win_ptr, MPID_Comm *comm_ptr):
 - Get window object handler and initial address of the window
- CH3_1scWinPost(MPID_Win *win_ptr, int *group);
 - Implement or be aware of the starting of a RMA epoch
- CH3_1scWinWait(MPID_Win *win_ptr)
 - Check the completion of an RMA epoch as a target.
- CH3_1scWinFinish(MPID_Win *win_ptr)
 - Inform remote processes about the finish of all RMA operations in current epoch.
- CH3_1scWinPut(MPID_Win *win_ptr, MPIDI_RMA_ops *rma_op)
 - Interface for sub-channels to realize truly one-sided put operations.
- CH3_1scWinGet(MPID_Win *win_ptr, MPIDI_RMA_ops *rma_op)

Extended Nemesis One-sided API

- MPID_nem_net_mod_WinCreate(void *base, MPI_Aint size, int comm_size, int rank, MPID_Win **win_ptr, MPID_Comm *comm_ptr)
 - Interface for netmods to get prepared for truly one-sided operations.
- MPID_nem_net_mod_WinPost(MPID_Win *win_ptr, int target_rank)
 - Interface for netmods with RMA ability to realize sync by RDMA write or even hardware multicast features.
- MPID_nem_net_mod_WinFinish(MPID_Win *win_ptr)
 - Interface for netmods with RDMA ability to realize CH3_1scWinFinish by RDMA write.
- MPID_nem_net_mod_WinWait(MPID_Win *win_ptr)
 - Interface for netmods to match net_mod_WinFinish functions with proper polling schemes.
- MPID_nem_net_mod_Put(MPID_Win *win_ptr, MPIDI_RMA_ops *rma_op, int size) MPID_nem_net_mod_Get(MPID_Win *win_ptr, MPIDI_RMA_ops *rma_op, int size)
 - Interface for netmods to carry out truly RMA put operation by hardware features.

Outline

- Introduction
- Problem Statement
- Design Challenges
- Evaluation of Performance
- Conclusions and Future Work

MVAPICH2 Software

- High Performance MPI Library for IB and 10GE
 - MVAPICH (MPI-1) and MVAPICH2 (MPI-2)
 - Used by more than 1,250 organizations
 - Empowering many TOP500 clusters
 - Available with software stacks of many IB, 10GE and server vendors including Open Fabrics Enterprise Distribution (OFED)
 - Also supports uDAPL device
 - http://mvapich.cse.ohio-state.edu
 - IB-Netmod has been incorporated into MVAPICH2 since 1.5 release (July 2010); IB-Netmod with one-sided extension will be available in the near future.

Experimental Testbed

Cluster A:

- 8 Intel Nehalem machines
- ConnectX QDR HCAs
- Eight Intel Xeon 5500 processors
- two sockets of four cores
- 2.40 GHz with 12 GB of main memory.

Cluster B:

- 32 Intel Clovertown
- ConnectX DDR HCAs
- Eight Intel Xeon processors
- 2.33 GHz with 6 GB of main memory.
- RedHat Enterprise Linux Server 5, OFED version 1.4.2.

Results Evaluation

- Micro-benchmark Level Evaluation
 - Two-sided
 - One-sided
 - Available Overlap rate
- Application Level Evaluation
 - NAMD
 - AWP-ODC

NETWORK-BASED COMPUTING LABORATORY

Micro-benchmark Evaluation Two-sided Intra-node Latency

 Nemesis intra-node communication design helps to reduce the latency of small messages.

Micro-benchmark Evaluation Two-sided Intra-node Bandwidth

- Between 8KB and 128KB message size range, MVPICH2 1.5 with LiMIC2 performs better.
- For even larger messages, Nemesis with KNEM has average 400MB/s larger bandwidth.
- Different inner design of KNEM and LiMIC2.

NETWORK-BASED COMPUTING LABORATORY

Micro-benchmark Evaluation Two-sided Inter-node Latency

- IB-netmod is able to provide 1.5us latency by using native InfiniBand, which efficiently utilize the high performance of InfiniBand network.
- Comparable performance as MVAPICH2 1.5

Micro-benchmark Evaluation Two-sided Inter-node Bandwidth

 Though IB-Netmod can achieve even better bi-directional bandwidth for medium message sizes up to 16K Bytes, it loses up to 200MB/s performance for message range between 32K Bytes and 256K Bytes.

Micro-benchmark Evaluation One-Sided MPI_Put Latency

- Through extended API, Nemesis IB-Netmod is able to reduces an average 10% latency for small messages.
- Extended API eliminates the fall-back overhead of customized CH3 interfaces...

Micro-benchmark Evaluation One-Sided MPI Put Bandwidth

- By direct one-sided implementation of MPI_Put operation, Nemesis-IB with extended one-sided API achieve nearly full bandwidth, the same as MVAPICH2 1.5.
- Nemesis IB-Netmod with original two-sided based API can only achieve 60% of full bandwidth.

Micro-benchmark Evaluation One-Sided MPI_Get

Similar results in MPI_Get benchmark.

Micro-benchmark Evaluation

- Computation is inserted after each round of multiple Put or Get operations.
- Overlap = (Tcomm + Tcomp Ttotal)/Tcomm
- 90% overlap achieved for large message, through extended API.

Application Evaluation NAMD apoa1

- Production molecular dynamics program for high performance simulation of large biomolecular system.
- Nemesis IB-Netmod performs as much good as MVAPICH2 1.5.
- As the number of processes increase, the new IB-Netmod shows a trend of even better performance, which maybe due to Nemesis intra-node optimization.

Application Evaluation AWP-ODC

- Anelastic Wave Propagation: earthquake simulation application.
- http://hpgeoc.sdsc.edu/AWPODC/
- AWP-ODC one-sided version with 128*256*256 elements per process.

24% reduction of execution time.

Conclusion

InfiniBand based network module

- based on MVAPICH2
- for modular Nemesis communication layer

Extended Nemesis API

- truly one-sided communication support for RMA semantics.
- Implemented in the new Nemesis IB-Netmod.
- Evaluation of its impact comparing with MVAPICH2 1.5.

Reusability?

 We believe the extended API can also be utilized by other netmods.

Future Work

- Intra-node one-sided communications
- IB-Netmod:
 - Scalability
 - Performance optimization techniques.
- Continue to design and evaluate new interfaces.

Thanks!

{luom, potluri, laipi, mancini, subramon, kandalla, surs, panda}@cse.ohio-state.edu

Network-based Computing Laboratory

http://mvapich.cse.ohio-state.edu/

